Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
EBioMedicine ; 100: 104960, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38232633

RESUMO

BACKGROUND: SARS-CoV-2-neutralizing antibodies (nABs) showed great promise in the early phases of the COVID-19 pandemic. The emergence of resistant strains, however, quickly rendered the majority of clinically approved nABs ineffective. This underscored the imperative to develop nAB cocktails targeting non-overlapping epitopes. METHODS: Undertaking a nAB discovery program, we employed a classical workflow, while integrating artificial intelligence (AI)-based prediction to select non-competing nABs very early in the pipeline. We identified and in vivo validated (in female Syrian hamsters) two highly potent nABs. FINDINGS: Despite the promising results, in depth cryo-EM structural analysis demonstrated that the AI-based prediction employed with the intention to ensure non-overlapping epitopes was inaccurate. The two nABs in fact bound to the same receptor-binding epitope in a remarkably similar manner. INTERPRETATION: Our findings indicate that, even in the Alphafold era, AI-based predictions of paratope-epitope interactions are rough and experimental validation of epitopes remains an essential cornerstone of a successful nAB lead selection. FUNDING: Full list of funders is provided at the end of the manuscript.


Assuntos
COVID-19 , SARS-CoV-2 , Cricetinae , Animais , Humanos , Feminino , Epitopos , Pandemias , Inteligência Artificial , Anticorpos Antivirais , Anticorpos Neutralizantes , Mesocricetus
2.
MAbs ; 15(1): 2210709, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37211816

RESUMO

As small and stable high-affinity antigen binders, VHHs boast attractive characteristics both for therapeutic use in various disease indications, and as versatile reagents in research and diagnostics. To further increase the versatility of VHHs, we explored the VHH scaffold in a structure-guided approach to select regions where the introduction of an N-glycosylation N-X-T sequon and its associated glycan should not interfere with protein folding or epitope recognition. We expressed variants of such glycoengineered VHHs in the Pichia pastoris GlycoSwitchM5 strain, allowing us to pinpoint preferred sites at which Man5GlcNAc2-glycans can be introduced at high site occupancy without affecting antigen binding. A VHH carrying predominantly a Man5GlcNAc2 N-glycan at one of these preferred sites showed highly efficient, glycan-dependent uptake by Mf4/4 macrophages in vitro and by alveolar lung macrophages in vivo, illustrating one potential application of glyco-engineered VHHs: a glycan-based targeting approach for lung macrophage endolysosomal system delivery. The set of optimal artificial VHH N-glycosylation sites identified in this study can serve as a blueprint for targeted glyco-engineering of other VHHs, enabling site-specific functionalization through the rapidly expanding toolbox of synthetic glycobiology.


Assuntos
Anticorpos de Domínio Único , Anticorpos de Domínio Único/genética , Antígenos , Epitopos , Macrófagos
3.
J Virol ; 96(19): e0129722, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36102648

RESUMO

Human respiratory syncytial virus (RSV) is the leading cause of severe acute lower respiratory tract infections in infants worldwide. Nonstructural protein NS1 of RSV modulates the host innate immune response by acting as an antagonist of type I and type III interferon (IFN) production and signaling in multiple ways. Likely, NS1 performs this function by interacting with different host proteins. In order to obtain a comprehensive overview of the NS1 interaction partners, we performed three complementary protein-protein interaction screens, i.e., BioID, MAPPIT, and KISS. To closely mimic a natural infection, the BioID proximity screen was performed using a recombinant RSV in which the NS1 protein is fused to a biotin ligase. Remarkably, MED25, a subunit of the Mediator complex, was identified in all three performed screening methods as a potential NS1-interacting protein. We confirmed the interaction between MED25 and RSV NS1 by coimmunoprecipitation, not only upon overexpression of NS1 but also with endogenous NS1 during RSV infection. We also demonstrate that the replication of RSV can be enhanced in MED25 knockout A549 cells, suggesting a potential antiviral role of MED25 during RSV infection. Mediator subunits function as transcriptional coactivators and are involved in transcriptional regulation of their target genes. Therefore, the interaction between RSV NS1 and cellular MED25 might be beneficial for RSV during infection by affecting host transcription and the host immune response to infection. IMPORTANCE Innate immune responses, including the production of type I and III interferons, play a crucial role in the first line of defense against RSV infection. However, only a poor induction of type I IFNs is observed during RSV infection, suggesting that RSV has evolved mechanisms to prevent type I IFN expression by the infected host cell. A unique RSV protein, NS1, is largely responsible for this effect, probably through interaction with multiple host proteins. A better understanding of the interactions that occur between RSV NS1 and host proteins may help to identify targets for an effective antiviral therapy. We addressed this question by performing three complementary protein-protein interaction screens and identified MED25 as an RSV NS1-interacting protein. We propose a role in innate anti-RSV defense for this Mediator complex subunit.


Assuntos
Complexo Mediador , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Proteínas não Estruturais Virais , Células A549 , Humanos , Interferons/metabolismo , Complexo Mediador/genética , Complexo Mediador/metabolismo , Infecções por Vírus Respiratório Sincicial/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
4.
Cell Death Dis ; 13(3): 280, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35351865

RESUMO

RIPK3 partially protects against disease caused by influenza A virus (IAV) infection in the mouse model. Here, we compared the immune protection of active vaccination with a universal influenza A vaccine candidate based on the matrix protein 2 ectodomain (M2e) and of passive immunization with anti-M2e IgG antibodies in wild type and Ripk3-/- mice. We observed that the protection against IAV after active vaccination with M2e viral antigen is lost in Ripk3-/- mice. Interestingly, M2e-specific serum IgG levels induced by M2e vaccination were not significantly different between wild type and Ripk3-/- vaccinated mice demonstrating that the at least the humoral immune response was not affected by the absence of RIPK3 during active vaccination. Moreover, following IAV challenge, lungs of M2e vaccinated Ripk3-/- mice revealed a decreased number of immune cell infiltrates and an increased accumulation of dead cells, suggesting that phagocytosis could be reduced in Ripk3-/- mice. However, neither efferocytosis nor antibody-dependent phagocytosis were affected in macrophages isolated from Ripk3-/- mice. Likewise following IAV infection of Ripk3-/- mice, active vaccination and infection resulted in decreased presence of CD8+ T-cells in the lung. However, it is unclear whether this reflects a deficiency in vaccination or an inability following infection. Finally, passively transferred anti-M2e monoclonal antibodies at higher dose than littermate wild type mice completely protected Ripk3-/- mice against an otherwise lethal IAV infection, demonstrating that the increased sensitivity of Ripk3-/- mice could be overcome by increased antibodies. Therefore we conclude that passive immunization strategies with monoclonal antibody could be useful for individuals with reduced IAV vaccine efficacy or increased IAV sensitivity, such as may be expected in patients treated with future anti-inflammatory therapeutics for chronic inflammatory diseases such as RIPK inhibitors.


Assuntos
Vírus da Influenza A , Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Animais , Anticorpos Antivirais , Humanos , Imunização Passiva , Imunoglobulina G , Camundongos , Camundongos Endogâmicos BALB C , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Vacinação , Proteínas da Matriz Viral
5.
Viruses ; 14(2)2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35216012

RESUMO

Respiratory syncytial virus (RSV) is the leading cause of severe acute lower respiratory tract infections in infants worldwide. Although several pattern recognition receptors (PRRs) can sense RSV-derived pathogen-associated molecular patterns (PAMPs), infection with RSV is typically associated with low to undetectable levels of type I interferons (IFNs). Multiple RSV proteins can hinder the host's innate immune response. The main players are NS1 and NS2 which suppress type I IFN production and signalling in multiple ways. The recruitment of innate immune cells and the production of several cytokines are reduced by RSV G. Next, RSV N can sequester immunostimulatory proteins to inclusion bodies (IBs). N might also facilitate the assembly of a multiprotein complex that is responsible for the negative regulation of innate immune pathways. Furthermore, RSV M modulates the host's innate immune response. The nuclear accumulation of RSV M has been linked to an impaired host gene transcription, in particular for nuclear-encoded mitochondrial proteins. In addition, RSV M might also directly target mitochondrial proteins which results in a reduced mitochondrion-mediated innate immune recognition of RSV. Lastly, RSV SH might prolong the viral replication in infected cells and influence cytokine production.


Assuntos
Imunidade Inata , Infecções por Vírus Respiratório Sincicial/imunologia , Vírus Sincicial Respiratório Humano/imunologia , Proteínas não Estruturais Virais/metabolismo , Humanos , Lactente , Interferon Tipo I/metabolismo , Infecções por Vírus Respiratório Sincicial/metabolismo , Infecções por Vírus Respiratório Sincicial/virologia , Transdução de Sinais , Replicação Viral
6.
Sci Transl Med ; 13(621): eabi7826, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34609205

RESUMO

Broadly neutralizing antibodies are an important treatment for individuals with coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Antibody-based therapeutics are also essential for pandemic preparedness against future Sarbecovirus outbreaks. Camelid-derived single domain antibodies (VHHs) exhibit potent antimicrobial activity and are being developed as SARS-CoV-2­neutralizing antibody-like therapeutics. Here, we identified VHHs that neutralize both SARS-CoV-1 and SARS-CoV-2, including now circulating variants. We observed that the VHHs bound to a highly conserved epitope in the receptor binding domain of the viral spike protein that is difficult to access for human antibodies. Structure-guided molecular modeling, combined with rapid yeast-based prototyping, resulted in an affinity enhanced VHH-human immunoglobulin G1 Fc fusion molecule with subnanomolar neutralizing activity. This VHH-Fc fusion protein, produced in and purified from cultured Chinese hamster ovary cells, controlled SARS-CoV-2 replication in prophylactic and therapeutic settings in mice expressing human angiotensin converting enzyme 2 and in hamsters infected with SARS-CoV-2. These data led to affinity-enhanced selection of the VHH, XVR011, a stable anti­COVID-19 biologic that is now being evaluated in the clinic.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Humanos , Modelos Animais , SARS-CoV-2
7.
mBio ; 12(4): e0074521, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34253060

RESUMO

The ectodomain of matrix protein 2 (M2e) of influenza A viruses is a universal influenza A vaccine candidate. Here, we report potential evasion strategies of influenza A viruses under in vivo passive anti-M2e IgG immune selection pressure in severe combined immune-deficient (SCID) mice. A/Puerto Rico/8/34-infected SCID mice were treated with the M2e-specific mouse IgG monoclonal antibodies (MAbs) MAb 65 (IgG2a) or MAb 37 (IgG1), which recognize amino acids 5 to 15 in M2e, or with MAb 148 (IgG1), which binds to the invariant N terminus of M2e. Treatment of challenged SCID mice with any of these MAbs significantly prolonged survival compared to isotype control IgG treatment. Furthermore, M2e-specific IgG2a protected significantly better than IgG1, and even resulted in virus clearance in some of the SCID mice. Deep sequencing analysis of viral RNA isolated at different time points after treatment revealed that the sequence variation in M2e was limited to P10H/L and/or I11T in anti-M2e MAb-treated mice. Remarkably, in half of the samples isolated from moribund MAb 37-treated mice and in all MAb 148-treated mice, virus was isolated with a wild-type M2 sequence but with nonsynonymous mutations in the polymerases and/or the hemagglutinin genes. Some of these mutations were associated with delayed M2 and other viral gene expression and with increased resistance to anti-M2e MAb treatment of SCID mice. Treatment with M2e-specific MAbs thus selects for viruses with limited variation in M2e. Importantly, influenza A viruses may also undergo an alternative escape route by acquiring mutations that result in delayed wild-type M2 expression. IMPORTANCE Broadly protective influenza vaccine candidates may have a higher barrier to immune evasion compared to conventional influenza vaccines. We used Illumina MiSeq deep sequence analysis to study the mutational patterns in A/Puerto Rico/8/34 viruses that evolve in chronically infected SCID mice that were treated with different M2e-specific MAbs. We show that under these circumstances, viruses emerged in vivo with mutations in M2e that were limited to positions 10 and 11. Moreover, we discovered an alternative route for anti-M2e antibody immune escape, in which a virus is selected with wild-type M2e but with mutations in other gene segments that result in delayed M2 and other viral protein expression. Delayed expression of the viral antigen that is targeted by a protective antibody thus represents an influenza virus immune escape mechanism that does not involve epitope alterations.


Assuntos
Anticorpos Antivirais/uso terapêutico , Imunoglobulina G/uso terapêutico , Vírus da Influenza A/genética , Vírus da Influenza A/imunologia , Mutação , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/imunologia , Animais , Sequenciamento de Nucleotídeos em Larga Escala , Evasão da Resposta Imune , Camundongos Endogâmicos BALB C , Camundongos SCID , Proteínas da Matriz Viral/classificação
8.
J Virol ; 95(11)2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33692208

RESUMO

Human respiratory syncytial virus (RSV) is a major cause of lower respiratory tract disease, especially in young children and the elderly. The fusion protein (F) exists in a pre- and postfusion conformation and is the main target of RSV-neutralizing antibodies. Highly potent RSV-neutralizing antibodies typically bind sites that are unique to the prefusion conformation of F. In this study we screened a single-domain antibody (VHH) library derived from a llama immunized with prefusion-stabilized F and identified a prefusion F-specific VHH that can neutralize RSV A at subnanomolar concentrations. Structural analysis revealed that this VHH primarily binds to antigenic site I while also making contacts with residues in antigenic site III and IV. This new VHH reveals a previously underappreciated membrane-proximal region sensitive for neutralization.ImportanceRSV is an important respiratory pathogen. This study describes a prefusion F-specific VHH that primarily binds to antigenic site I of RSV F. This is the first time that a prefusion F-specific antibody that binds this site is reported. In general, antibodies that bind to site I are poorly neutralizing, whereas the VHH described here neutralizes RSV A at subnanomolar concentrations. Our findings contribute to insights into the RSV F antigenic map.

9.
Science ; 371(6530): 681-682, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33574203
10.
Nat Commun ; 11(1): 5838, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33203860

RESUMO

Emergence of SARS-CoV-2 causing COVID-19 has resulted in hundreds of thousands of deaths. In search for key targets of effective therapeutics, robust animal models mimicking COVID-19 in humans are urgently needed. Here, we show that Syrian hamsters, in contrast to mice, are highly permissive to SARS-CoV-2 and develop bronchopneumonia and strong inflammatory responses in the lungs with neutrophil infiltration and edema, further confirmed as consolidations visualized by micro-CT alike in clinical practice. Moreover, we identify an exuberant innate immune response as key player in pathogenesis, in which STAT2 signaling plays a dual role, driving severe lung injury on the one hand, yet restricting systemic virus dissemination on the other. Our results reveal the importance of STAT2-dependent interferon responses in the pathogenesis and virus control during SARS-CoV-2 infection and may help rationalizing new strategies for the treatment of COVID-19 patients.


Assuntos
Betacoronavirus/fisiologia , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Modelos Animais de Doenças , Pneumonia Viral/patologia , Pneumonia Viral/virologia , Fator de Transcrição STAT2/metabolismo , Transdução de Sinais , Animais , Betacoronavirus/patogenicidade , COVID-19 , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/metabolismo , Cricetinae , Imunidade Inata , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Pulmão/patologia , Pulmão/virologia , Camundongos , Pandemias , Pneumonia Viral/imunologia , Pneumonia Viral/metabolismo , SARS-CoV-2 , Fator de Transcrição STAT2/genética , Replicação Viral
12.
Hum Vaccin Immunother ; 16(9): 2007-2017, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32530723

RESUMO

The small hydrophobic (SH) glycoprotein of human respiratory syncytial virus (RSV) is a transmembrane protein that is poorly accessible by antibodies on the virion but has an ectodomain (SHe) that is accessible and expressed on infected cells. The SHe from RSV strain A has been formulated in DPX, a unique delivery platform containing an adjuvant, and is being evaluated as an RSV vaccine candidate. The proposed mechanism of protection is the immune-mediated clearance of infected cells rather than neutralization of the virion. Our phase I clinical trial data clearly showed that vaccination resulted in robust antibody responses, but it was unclear if these immune responses have any correlation to immune responses to natural infection with RSV. Therefore, we embarked on this study to examine these immune responses in older adults with confirmed RSV infection. We compared vaccine-induced (DPX-RSV(A)) immune responses from participants in a Phase 1 clinical trial to paired acute and convalescent titers from older adults with symptomatic laboratory-confirmed RSV infection. Serum samples were tested for anti-SHe IgG titers and the isotypes determined. T cell responses were evaluated by IFN-γ ELISPOT. Anti-SHe titers were detected in 8 of 42 (19%) in the acute phase and 16 of 42 (38%) of convalescent serum samples. IgG1, IgG3, and IgA were the prevalent isotypes generated by both vaccination and infection. Antigen-specific T cell responses were detected in 9 of 16 (56%) of vaccinated participants. Depletion of CD4+ but not CD8+ T cells abrogated the IFN-γ ELISPOT response supporting the involvement of CD4+ T cells in the immune response to vaccination. The data showed that an immune response like that induced by DPX-RSV(A) could be seen in a subset of participants with confirmed RSV infection. These findings show that older adults with clinically significant infection as well as vaccinated adults generate a humoral response to SHe. The induction of both SHe-specific antibody and cellular responses support further clinical development of the DPX-RSV(A) vaccine.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vacinas contra Vírus Sincicial Respiratório , Vírus Sincicial Respiratório Humano , Idoso , Animais , Anticorpos Antivirais , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Linfócitos T
13.
Cell ; 181(5): 1004-1015.e15, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32375025

RESUMO

Coronaviruses make use of a large envelope protein called spike (S) to engage host cell receptors and catalyze membrane fusion. Because of the vital role that these S proteins play, they represent a vulnerable target for the development of therapeutics. Here, we describe the isolation of single-domain antibodies (VHHs) from a llama immunized with prefusion-stabilized coronavirus spikes. These VHHs neutralize MERS-CoV or SARS-CoV-1 S pseudotyped viruses, respectively. Crystal structures of these VHHs bound to their respective viral targets reveal two distinct epitopes, but both VHHs interfere with receptor binding. We also show cross-reactivity between the SARS-CoV-1 S-directed VHH and SARS-CoV-2 S and demonstrate that this cross-reactive VHH neutralizes SARS-CoV-2 S pseudotyped viruses as a bivalent human IgG Fc-fusion. These data provide a molecular basis for the neutralization of pathogenic betacoronaviruses by VHHs and suggest that these molecules may serve as useful therapeutics during coronavirus outbreaks.


Assuntos
Anticorpos Neutralizantes/isolamento & purificação , Betacoronavirus/imunologia , Anticorpos de Domínio Único/isolamento & purificação , Animais , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/imunologia , COVID-19 , Camelídeos Americanos/imunologia , Infecções por Coronavirus/terapia , Reações Cruzadas , Imunoglobulina G/química , Imunoglobulina G/imunologia , Modelos Moleculares , Pandemias , Pneumonia Viral/terapia , Domínios Proteicos , Receptores Virais/química , SARS-CoV-2 , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/imunologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia
14.
Mol Ther Nucleic Acids ; 20: 777-787, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32438313

RESUMO

To date, mRNA-based biologics have mainly been developed for prophylactic and therapeutic vaccination to combat infectious diseases or cancer. In the past years, optimization of the characteristics of in vitro transcribed mRNA has led to significant reduction of the inflammatory responses. Thanks to this, mRNA therapeutics have entered the field of passive immunization. Here, we established an mRNA treatment that is based on mRNA that codes for a bispecific single-domain antibody construct that can selectively recruit innate immune cells to cells infected with influenza A virus. The constructs consist of a single-domain antibody that binds to the ectodomain of the conserved influenza A matrix protein 2, while the other single-domain antibody binds to the activating mouse Fcγ receptor IV. Formulating the mRNA into DOTAP (1,2-dioleoyl-3-trimethylammonium-propane)/cholesterol nanoparticles and delivering these intratracheally to mice allowed the production of the bispecific single-domain antibody in the lungs, and administration of these mRNA-particles prior to influenza A virus infection was associated with a significant reduction in viral titers and a reduced morbidity in mice. Overall, our data provide evidence that the local delivery of mRNA encoding a bispecific single-domain antibody format in the lungs could be a promising pulmonary antiviral prophylactic treatment.

15.
PLoS Pathog ; 15(10): e1007984, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31622448

RESUMO

Human respiratory syncytial virus (RSV) is the most important cause of acute lower respiratory tract disease in infants worldwide. As a first line of defense against respiratory infections, innate immune responses, including the production of type I and III interferons (IFNs), play an important role. Upon infection with RSV, multiple pattern recognition receptors (PRRs) can recognize RSV-derived pathogen-associated molecular patterns (PAMPs) and mount innate immune responses. Retinoic-acid-inducible gene-I (RIG-I) and nucleotide-binding oligomerization domain-containing protein 2 (NOD2) have been identified as important innate receptors to mount type I IFNs during RSV infection. However, type I IFN levels remain surprisingly low during RSV infection despite strong viral replication. The poor induction of type I IFNs can be attributed to the cooperative activity of 2 unique, nonstructural (NS) proteins of RSV, i.e., NS1 and NS2. These viral proteins have been shown to suppress both the production and signaling of type I and III IFNs by counteracting a plethora of key host innate signaling proteins. Moreover, increasing numbers of IFN-stimulated genes (ISGs) are being identified as targets of the NS proteins in recent years, highlighting an underexplored protein family in the identification of NS target proteins. To understand the diverse effector functions of NS1 and NS2, Goswami and colleagues proposed the hypothesis of the NS degradasome (NSD) complex, a multiprotein complex made up of, at least, NS1 and NS2. Furthermore, the crystal structure of NS1 was resolved recently and, remarkably, identified NS1 as a structural paralogue of the RSV matrix protein. Unfortunately, no structural data on NS2 have been published so far. In this review, we briefly describe the PRRs that mount innate immune responses upon RSV infection and provide an overview of the various effector functions of NS1 and NS2. Furthermore, we discuss the ubiquitination effector functions of NS1 and NS2, which are in line with the hypothesis that the NSD shares features with the canonical 26S proteasome.


Assuntos
Imunidade Inata , Infecções por Vírus Respiratório Sincicial/imunologia , Vírus Sincicial Respiratório Humano/imunologia , Proteínas não Estruturais Virais/metabolismo , Humanos , Infecções por Vírus Respiratório Sincicial/metabolismo , Infecções por Vírus Respiratório Sincicial/virologia , Transdução de Sinais , Ubiquitinação , Replicação Viral
16.
J Transl Med ; 17(1): 242, 2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31345237

RESUMO

BACKGROUND: Current human influenza vaccines lack the adaptability to match the mutational rate of the virus and therefore require annual revisions. Because of extensive manufacturing times and the possibility that antigenic alterations occur during viral vaccine strain production, an inherent risk exists for antigenic mismatch between the new influenza vaccine and circulating viruses. Targeting more conserved antigens such as nucleoprotein (NP) could provide a more sustainable vaccination strategy by inducing long term and heterosubtypic protection against influenza. We previously demonstrated that intranodal mRNA injection can induce potent antigen-specific T-cell responses. In this study, we investigated whether intranodal administration of mRNA encoding NP can induce T-cell responses capable of protecting against a heterologous influenza virus challenge. METHODS: BALB/c mice were immunized in the inguinal lymph nodes with different vaccination regimens of mRNA encoding NP. Immune responses were compared with NP DNA vaccination via IFN-γ ELISPOT and in vivo cytotoxicity. For survival experiments, mice were prime-boost vaccinated with 17 µg NP mRNA and infected with 1LD50 of H1N1 influenza virus 8 weeks after boost. Weight was monitored and viral titers, cytokines and immune cell populations in the bronchoalveolar lavage, and IFN-γ responses in the spleen were analyzed. RESULTS: Our results demonstrate that NP mRNA induces superior systemic T-cell responses against NP compared to classical DNA vaccination. These responses were sustained for several weeks even at low vaccine doses. Upon challenge infection, vaccination with NP mRNA resulted in reduced lung viral titers and improved recovery from infection. Finally, we show that vaccination with NP mRNA affects the immune response in infected lungs by lowering immune cell infiltration while increasing the fraction of T cells, monocytes and MHC II+ alveolar macrophages within immune infiltrates. This change was associated with altered levels of both pro- and anti-inflammatory cytokines. CONCLUSIONS: These findings suggest that intranodal vaccination with NP mRNA induces cross-strain immunity against influenza, but also highlight a paradox of influenza immunity, whereby robust immune responses can provide protection, but can also transiently exacerbate symptoms during infection.


Assuntos
Vacinas contra Influenza/imunologia , Nucleoproteínas/administração & dosagem , Infecções por Orthomyxoviridae/prevenção & controle , RNA Mensageiro/administração & dosagem , Animais , Anticorpos Antivirais/imunologia , Antígenos/química , Lavagem Broncoalveolar , Cães , Feminino , Humanos , Vírus da Influenza A Subtipo H3N2 , Interferon gama/imunologia , Interferon gama/metabolismo , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos BALB C , Plasmídeos , Linfócitos T/citologia
17.
Sci Rep ; 9(1): 4450, 2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30872764

RESUMO

Influenza A virions are highly pleomorphic, exhibiting either spherical or filamentous morphology. The influenza A virus strain A/Udorn/72 (H3N2) produces copious amounts of long filaments on the surface of infected cells where matrix protein 1 (M1) and 2 (M2) play a key role in virus filament formation. Previously, it was shown that an anti-M2 ectodomain (M2e) antibody could inhibit A/Udorn/72 virus filament formation. However, the study of these structures is limited by their small size and complex structure. Here, we show that M2e-specific IgG1 and IgG2a mouse monoclonal antibodies can reduce influenza A/Udorn/72 virus plaque growth and infectivity in vitro. Using Immuno-staining combined with super-resolution microscopy that allows us to study structures beyond the diffraction limit, we report that M2 is localized at the base of viral filaments that emerge from the membrane of infected cells. Filament formation was inhibited by treatment of A/Udorn/72 infected cells with M2e-specific IgG2a and IgG1 monoclonal antibodies and resulted in fragmentation of pre-existing filaments. We conclude that M2e-specific IgGs can reduce filamentous influenza A virus replication in vitro and suggest that in vitro inhibition of A/Udorn/72 virus replication by M2e-specific antibodies correlates with the inhibition of filament formation on the surface of infected cells.


Assuntos
Anticorpos Monoclonais/farmacologia , Interações Hospedeiro-Patógeno/fisiologia , Vírus da Influenza A Subtipo H3N2/patogenicidade , Proteínas da Matriz Viral/imunologia , Animais , Cães , Feminino , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Imunoglobulina G , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Vírus da Influenza A Subtipo H3N2/imunologia , Células Madin Darby de Rim Canino , Camundongos Endogâmicos BALB C , Microscopia Confocal/métodos , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia
18.
J Biotechnol ; 294: 26-29, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30771443

RESUMO

With few exceptions, all currently marketed antibody therapeutics are IgG molecules. One of the reasons that other antibody isotypes are less developed are the difficulties associated with their purification. While commercial chromatography affinity resins, like staphylococcal superantigen-like 7 (SSL7) protein-containing resin, allow purification of IgAs from many animal species, these are not useful for murine IgAs. Because the mouse model is predominantly used for preclinical evaluation of IgA-based therapeutics, there is a need to develop an effective purification method for mouse IgA. Here, we adapted the sequence of a mouse IgA by mutating two amino acid residues in the fragment crystallizable (Fc) sequence to facilitate its purification on SSL7 resin. The mutated IgA Fc (hereafter referred to as IgA*) was then genetically fused to the variable domain of a llama heavy chain-only antibody (VHH) directed against the fusion protein of human respiratory syncytial virus (HRSV), resulting in VHH-IgA*, and transiently produced in infiltrated Nicotiana benthamiana leaves. These plant-produced mouse VHH-IgA* fusions were enriched by SSL7 affinity chromatography and were found to be functional in ELISA and could neutralize RSV in vitro, suggesting no detrimental effect of the mutation on their antigen-binding properties. This approach for the purification of murine IgA will facilitate downstream processing steps when designing innovative murine IgA-based fusions.


Assuntos
Exotoxinas/fisiologia , Imunoglobulina A/fisiologia , Aminoácidos , Animais , Camundongos , Mutação , Folhas de Planta , Vírus Sinciciais Respiratórios , Anticorpos de Domínio Único
19.
Eur J Pharm Biopharm ; 136: 259-266, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30731115

RESUMO

Microneedle arrays (MNAs) are a promising mean to administer vaccines. Without the need of highly trained personnel, MNAs can be applied to deliver vaccines into the dermis, which is well equipped to initiate potent immune responses. While vaccination using dissolving microneedle arrays has been extensively investigated, the use of solid nanoporous MNAs (npMNAs) to deliver vaccines remained largely unexplored. In this report we investigated whether npMNAs with an average pore size of 80 nm, can be used for influenza vaccination based on recombinant hemagglutinin (HA) protein of the 2009 pandemic H1N1 (pH1N1) virus. Fluorescently labeled HA loaded in the npMNAs was effectively delivered into the skin of mouse ears, as a result of a diffusion-based process. Compared to intramuscular immunization, intradermal HA vaccination of mice using npMNAs elicited high levels of HA antigen specific antibodies, with pH1N1 hemagglutination inhibition and neutralization activity. Moreover, mice vaccinated with pH1N1 HA loaded npMNAs were completely protected against a potentially lethal challenge with mouse adapted pH1N1 virus. These results illustrate that intradermal subunit vaccine immunization using npMNAs is a promising approach to facilitate effective vaccination.


Assuntos
Hemaglutininas/administração & dosagem , Vacinas contra Influenza/administração & dosagem , Influenza Humana/prevenção & controle , Microinjeções/métodos , Nanoporos , Vacinação/métodos , Animais , Cerâmica/química , Cerâmica/farmacocinética , Cães , Hemaglutininas/química , Hemaglutininas/metabolismo , Humanos , Imunidade Celular/efeitos dos fármacos , Imunidade Celular/fisiologia , Vacinas contra Influenza/química , Vacinas contra Influenza/farmacocinética , Influenza Humana/imunologia , Influenza Humana/metabolismo , Células Madin Darby de Rim Canino , Camundongos , Microinjeções/instrumentação , Agulhas , Vacinação/instrumentação
20.
Front Immunol ; 10: 2920, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31921179

RESUMO

Lower respiratory tract infections, such as infections caused by influenza A viruses, are a constant threat for public health. Antivirals are indispensable to control disease caused by epidemic as well as pandemic influenza A. We developed a novel anti-influenza A virus approach based on an engineered single-domain antibody (VHH) construct that can selectively recruit innate immune cells to the sites of virus replication. This protective construct comprises two VHHs. One VHH binds with nanomolar affinity to the conserved influenza A matrix protein 2 (M2) ectodomain (M2e). Co-crystal structure analysis revealed that the complementarity determining regions 2 and 3 of this VHH embrace M2e. The second selected VHH specifically binds to the mouse Fcγ Receptor IV (FcγRIV) and was genetically fused to the M2e-specific VHH, which resulted in a bi-specific VHH-based construct that could be efficiently expressed in Pichia pastoris. In the presence of M2 expressing or influenza A virus-infected target cells, this single domain antibody construct selectively activated the mouse FcγRIV. Moreover, intranasal delivery of this bispecific FcγRIV-engaging VHH construct protected wild type but not FcγRIV-/- mice against challenge with an H3N2 influenza virus. These results provide proof of concept that VHHs directed against a surface exposed viral antigen can be readily armed with effector functions that trigger protective antiviral activity beyond direct virus neutralization.


Assuntos
Anticorpos Antivirais/imunologia , Vírus da Influenza A/imunologia , Influenza Humana/imunologia , Influenza Humana/metabolismo , Influenza Humana/virologia , Receptores de IgG/metabolismo , Anticorpos de Domínio Único/imunologia , Proteínas da Matriz Viral/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Biespecíficos/química , Anticorpos Biespecíficos/imunologia , Anticorpos Antivirais/química , Linhagem Celular , Humanos , Camundongos , Modelos Moleculares , Peptídeos/química , Peptídeos/imunologia , Conformação Proteica , Receptores de IgG/química , Anticorpos de Domínio Único/química , Relação Estrutura-Atividade , Proteínas da Matriz Viral/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...